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Chaotic Dynamics, Markov Partitions, 
and Zipf's Law 
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A chaotic dynamics model creating Markovian strings of symbols as well as 
sequences of "words" is presented, and its possible relevance to Zipf's law is 
discussed. 
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1. I N T R O D U C T I O N  

Large classes of deterministic dynamical systems possessing few degrees of 
freedom and giving rise to chaotic attractors can generate complexity in the 
form of an interplay between randomness and orderJ 1) 

Inasmuch as randomness ensures variety and information generation, 
while order ensures reliability, it is legitimate to expect that chaotic 
dynamics should be relevant in biological information processing. 12) In this 
communication we show how, starting from a deterministic dynamical 
system operating in the chaotic region, one may (a) generate strings of 
symbols obeying a well-defined Markov  statistics, and (b) combine these 
symbols in words interrupted by the pause (blank space), whose abun- 
dance is described by an inverse power law similar to Zipf's law of 
experimental linguistics. ~3) 

Inverse power law distributions have been investigated in recent years 
in connection with self-similar (fractal) processes in physics, biology, 
cognitive psychology, and social sciences. ~4 6) The best-known examples 
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refer to the spectral domain (I /f  noise) or to highly multivariable processes. 
In this respect, therefore, Zipf's law 

A 
P(r )~= (1) 

r • 

relating the probability P(r) of appearance of words in a natural language 
with their rank r appears to be rather exceptional. Here we show that 
Eq. (1) can be recovered in some asymptotic sense (to be defined shortly) 
from quite simple dynamical systems involving few degrees of freedom, 
provided an appropriate mapping is constructed between the (chaotic) 
dynamics and Markovian strings of symbols, and an adequate definition of 
rank is adopted. 

2. M A P P I N G  C H A O T I C  D Y N A M I C S  INTO A M A R K O V  
PROCESS 

Consider a dissipative recurrent dynamical system 

Xn+ 1 = F ( X n ,  ~ )  ( 2 )  

possessing a smooth invariant probability density p(x). We partition the 
state space into N nonoverlapping cells Ci such that the boundaries 
between cells are preserved by the dynamics. Clearly, the shift process 
induced on such a Markov partition by Eq. (2) generates sequences of 
"symbols" whose number is equal to N. We have shown that, under 
certain conditions, the probability distribution of these strings obeys a 
Chapman-Kolmogorov equation giving rise to an irreversible approach to 
a stationary state and to an H-theorem(7): 

N 
P,+~(i)= ~ WjiP,(j), i= 1,..., U (3) 

j = l  

A simple example of transition between (2) and (3), which will be used 
in the sequel, is provided by the logistic map in the fully chaotic region, 

x ,+1=4x , (1 -x , ) ,  0~<x~<l (4) 

For this dynamical system there exists a family of Markov partitions whose 
cells are separated by the points on the unstable periodic orbits. For 
instance, the points of the period-two orbit ~1 ~- 0.345, )72 ~- 0.905 define a 
three-cell partition (Fig. 1). The resulting three "states" c~, fl, 7, which can 
also be viewed as "letters" of an alphabet, are then continuously transfor- 
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Fig. 1. A three-cell Markov partition of the logistic map. 

reed into each other by the dynamics according to a first-order Markov 
chain whose conditional probability matrix turns out to be (7) 

~brioble 

1/2 l/2 i ) 
W =  0 1/2 1 2 (5) 
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Fig. 2. 
variables x, y, z of the model of Eq. (6) cross the threshold values L:,, Ly, L= with a positive 
slope. 

Asymmetric sequence involving the three symbols X, Y, Z generated as the three 
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One can show that the lumping of certain cells of the above-defined 
partitions generates Markov chains of higher order characterized by the 
existence of correlations between successive symbols. ~7) 

A second mechanism of producing information-rich sequences of sym- 
bols and hypersymbols (groups of symbols) has been also suggested 
recently. (8) One considers a dissipative flow whose state variables x, y, z 
perform sustained (aperiodic) oscillations and assumes that when a 
variable crosses a certain predetermined level with, say, a positive slope a 
symbol "forms" and is subsequently "typed" (Fig. 2). One can envisage in 
this way a sequence of level crossing variables--symbols--standing as a 
one-dimensional trace of the underlying multidimensional flow. The 
sequence is by necessity asymmetric (a syndrome that all languages share) 
as a result of the dissipative character of the flow in phase space. In ref. 8 
numerical examples are given for the R6ssler attractor, 

. 2 =  - y -  z 

9 = x + a y  

= b x  - cz  + x z  (6) 

with a =0.38, b = 0.3, c = 4.5, and thresholds L x = L y  = L z  = 3. A typical 
sequence generated by this mechanism is 

z y x  z x y x  z x y x  z y x  z x y x  z y x  z y x  z x  z y x  z y x  z x y x  zyx . . .  (7a) 

Remarkably, one can verify that the above sequence can be formulated 
more succintly by introducing the hypersymbols 

c~ = z y x ,  fl = z x y x ,  7 = z x  (Tb) 

giving rise to 

~flflc~fl~o~c~flc~... (7c) 

A statistical analysis reveals strong correlations in the sequence (7a) 
which to a very good approximation can be fitted by a fifth-order Markov 
process. On the other hand, the hypersymbol sequence is definitely more 
random first order chain, indicating that the "compression" achieved by the 
hypersymbols has indeed removed much of the structure of the original 
sequence.(8) 

3. W O R D  GENERATION A N D  ZIPF'S LAW 

Having now at our disposal the above two algorithms for generating 
information-rich strings of symbols from a deterministic dynamics, we 
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come to the main object of our study. Specifically, we show that starting 
from the "alphabet" induced in the shift space, one can generate sequences 
of "words" having some well-defined statistical properties. 

The starting point is to choose one of the symbols of our alphabet to 
be the pause (blank space). As the dynamics unfolds in the shift space, the 
remaining N - 1  symbols are then organized in words CL, of varying 
lengths L, interrupted by the pause. We want to find the probability P(CL) 
of formation of such words. Notice that the sequence CL is in general a 
non-Markovian process. (9) 

We first carry out the analysis on the simple example of the three-cell 
partition of the logistic map. Choosing fl to be the pause limits the 
"language" to words involving a single nontrivial letter c~, since the role of 
is trivial (W~--1).  We obtain, using the explicit form of the transition 
probability matrix (5), 

P(CL) = W~-~ = (1/2) L-l, L~>2 (8a) 

If, on the other hand, ? is used as pause, a richer language involving two 
nontrivial symbols c~ and fl is created. Arguing as above, we obtain 

L - - I  

P(CL) = Z .' 
m = l  

= (1/2)L ( L -  1), L~>2 (8b) 

Although (8a) and (8b) differ significantly for small integer values of CL, 
they tend to the same asymptotic form for long words, L ~ oe. Stated 
differently, in this limit the word processor is universally penalized in an 
exponential fashion with the length of the word generated. The argument 
can clearly be extended to partitions involving more cells, the difference 
being merely the occurrence of higher powers of L multiplying an exponen- 
tial of the form a r, a being a suitable combination of elements of the 
conditional probability matrix. 

Figure 3 depicts the dependence of the logarithm of P(Cc) versus L 
obtained by iterating the dynamical system of Eq. (4) and subsequently 
monitoring the frequency of appearance of strings of symbols of given 
length between two pauses. The agreement with Eqs. (8a)-(8b) (solid lines 
in Fig. 3) is very satisfactory. 

Following Mandelbrot's discussion (6) of the concept of "lexico- 
graphical tree," we now define the rank r/. of a word of length L as the sum 
of all words of length equal to or less than L, 

L 

rL = 1 + Z Ki (9) 
i = l  
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Fig. 3. Probability of words of length L plotted against L. The words are generated by the 
shift process induced by the dynamics [Eq. (4)] on the three-cell Markov partition of Fig. 1. 
The crosses and circles stand for the numerically computed probability using, respectively, 
letter fl and letter y as the pause. Solid lines represent the analytically deduced laws (8a) 
and (8b). 

K being the number of symbols in the alphabet other than the pause. For 
long words, such that r L ~> 1 / ( K -  1), one can easily deduce from (9) that 

r L ~ K  L-L~ (10a) 

where Lo is defined through 

K / ( K -  1) = K -Lo (lOb) 

Let us apply this to our previous examples. We have K =  2, i.e., Lo-- - 1  
and r z ~ 2  L+2. Consequently, from (Sa)-(8b) we obtain for large values 
of L, 

P(~)~ ]/r~ (11) 

which is precisely Zipf's law [Eq. (1)] with 2 = 1. 
Essential in the above reasoning was the fact that our dynamical 

system releases the successive symbols at regular time intervals. In a dis- 
sipative flow such as R6ssler's system [Eq. (6)] this will not be the case. 
Figure 4 depicts the numerically computed In P(CL) versus L for the hyper- 



C h a o t i c  D y n a m i c s  921 

Fig. 4. 

-2 

tn P -4 

-6 

i i i I l 

[ ]  

0 0 0 0 0 

0 

0 0 0 

0 0 

[ ]  0 

- -  o 
[ ]  o 

o 
[ ]  

o 

o o 

I I I I 1 
5 10 15 20 25 

Probability of words of length L plotted against L. The words are generated by 
R6ssler's model [Eq. (6)] in the hypersymbol space, y being used as the pause. 

symbol sequence of this model using 7 as the pause. The dependence is now 
more complicated than in Fig. 3, despite certain similarities in the general 
trend. 

One can verify that the mean time of formation of a word increases 
with its length. On the other hand, there exists a large dispersion around 
the mean, leading to crossovers in the times of formation observed in a 
given realization of particular words of different lengths. We conjecture 
that this phenomenon might be at the origin of the observed deviation 
from Zipf's law. 

An interesting question is whether one can identify a function measur- 
ing the "quality" of the three processors corresponding to Eq. (8a), 
Eq. (8b), and the R6ssler model. In the theory of dynamical systems it is 
customary to characterize the qualitative properties of the trajectories by 
the topological entropy. (1~ However, being an invariant, this quantity 
cannot differentiate between strings of symbols involving alphabets with 
different numbers of letters. For  instance, the processors corresponding to 
Eq. (8a) and (8b) both have the same topological entropy h = In 2, which is 
nothing but the topological entropy of the logistic map. A similar remark 
holds for the R6ssler system. It has been shown (11) that in the region in 
which the chaotic attractor considered in Section 2 exists, the successive 
iterates of variable x arising from the intersection of the flow by the plane 
( y = 0 ,  x < 0 ,  z < l )  give rise to a cubiclike map involving three 

822/54/3-4-23 
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monotonous segments. This gives a topological entropy h = In 3 which is 
again an invariant. 

It is well known that topological entropy is an upper bound of the 
measure-theoretic entropy, the latter being the supremum of the rate of 
change of the entropy of an initial partition of state space in the limit of 
inifite refinement. ~176 In the present paper we are not concerned with such a 
limit, since we are able to obtain a well-defined stochastic process involving 
a finite number of states, through coarse graining. We therefore introduce 
the information entropy of the stochastic process { CL }, 

S, = - ~  P(CL)In P(CL) ( 1 2 )  
L 

Contrary to h, this quantity is not an invariant, but depends on the 
partition, that is, on the algorithm generating the stochastic process {CL} 
from the original dynamical system. Notice, however, that St should not be 
identified with the entropy of the partition: the latter involves the 
probability P(j) of being in cell j [Eq. (3)] rather than P(CL). 

Computing St using the analytical expressions (8a)-(8b) and the 
numerical values corresponding to Fig. 4 yields S t = 2 1 n 2 - 1 . 3 9  for 
Eq. (8a), SI~-1.88 for Eq. (8b), and S,---2.87 for R6ssler's model. This 
trend, which must be contrasted with the invariance of h, reflects, in a 
sense, the increasing richness of the "repertoires" of the corresponding 
languages. 

4. V A R I A T I O N A L  F O R M U L A T I O N  OF ZIPF'S LAW 

In this section we show that one can deduce Zipf's law by employing a 
maximum entropy formalism (4) as follows: we search for the probability 
density function P(x) characterizing a word of rank order x, which 
maximizes the a priori uncertainty 

S(x)= -fP(x)lnP(x)dx, fP(x)dx=l (13) 

or the maximum, per word average, information conveyed by a language 
using such a "syntax"--under a given constraint. Such a constraint is 
associated with a certain average "cost" and is of the general form 

f~(x) P(x) = const (14a) dx 

If we choose 

~(x) ~ ln  x (14b) 
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(something which has been dismissed as "unphysical" by Montroll and 
Shlesinger, 14) thereby prompting them to derive inverse-power law dis- 
tributions as limiting cases of log normal ones), we end up with the 
relationship between length L and rank rL derived earlier [Eq. (10a)]. In 
other words, we express the natural idea that the "cost" of a word is on 
average proportional to its length. 

The maximum entropy subject to (14a) may now be reduced to the 
search of extrema of the functional 

H ( P ) =  - f  P(x) ln P(x) d x -  211 P(x) d x -  22 I ln xP(x) dx 

Setting OH/aP = 0, one finds 

P(x) ~ exp{ ( -21  - )~2 In x)} = A/x ~2 (15) 

where A is the normalization constant over the interval of x. It is obvious 
that P(x) obeys the scaling relation 

P(ax) d(ax) = a ~ - ~2P(x) dx (16) 

implying a lack of fundamental scale in the process underlying P(x). Alter- 
natively, if the rank order x with a distribution P(x) is known in a given 
interval, that interval can be extended: the scaling implies that the 
fluctuations of the random variable x are generated at each scale in a 
statistically identical (self-similar) fashion. 

The above arguments provide an additional qualitative explanation of 
the deviations from Zipf's law found in the preceding section for con- 
tinuous time flows. Indeed, as pointed out earlier, there exists in this case a 
large dispersion around the average time needed to form a word of a given 
length. As a result, a "cost" function proportional to the length of a word 
does not describe adequately the conditions that must be met for its 
formation. 

5. D I S C U S S I O N  

An experimental apparatus--or  a cognitive processor for that 
matter--recognizes the external world in a "coarse-grained" fashion. In 
this paper we have considered two particular forms of a coarse-graining 
operation: partitioning of state space into cells satisfying certain conditions; 
and monitoring the crossings of appropriately defined threshold values by 
the state variables. We have shown that deterministic chaos induces in the 
discrete state space constructed in this manner stochastic processes of 
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varying complexity. In particular, we have identified some mechanisms 
leading to a statistical distribution of "words" of a given rank, described 
by Zipf's law. We have also indicated some reasons limiting the full 
applicability of this law in cont inuous time dynamical  systems. 

We believe that  our  results provide further support  for the interest in 
chaotic dynamics in information and cognitive sciences. In future 
investigations it is planned to extend the analysis to alternative mechanisms 
of producing information-rich strings of symbols, such as spatially dis- 
tributed networks or transitions between coexisting attractors. 
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